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Common Powers

Prefix  Symbol Power of 10 Powerof 2 | Prefix  Symbol Power of 10

Kilo K 1thousand = 10°  29=1024 | Mill m 1 thousandth = 10~
Mega M 1 million = 10° e Micro m 1 millionth = 107°
Giga G 1 billion = 10° 2% Nano n 1 billionth = 107°

Tera T 1 trillion = 102 g Pico D 1 trillionth = 10712
Peta P 1 quadrillion = 10" 250 Femto f 1 quadrillionth = 1071°
Exa E 1 quintillion = 10 280 Atto a 1 quintillionth = 10718
Zetta Z 1 sextillion = 102 910 Zepto z 1 sextillionth = 1072
Yotta Y 1 septillion = 1024 280 Yocto y 1 septillionth = 10724




UNITS OF LENGTH

1 inch (1n)
1 foot (ft)

1 yard (yd)
1 meter (m)

1 kilometer (km)

1 statute mule
(sm or stat. mule)

1 nautical mule
(nm or naut. nule)

1 furlong

Linit=

2.54 centimeters (cm)
3048 cm =0.3048 m

0.9144 meter
39.37 inches

0.54 nautical mile
0.62 statute nule
1093.6 yards
3280.8 feet

0.87 nautical nule
1.61 kilometers
1760 yards

5280 feet

1.15 statute mules
1.852 kilometers
2025 yards

6076 feet

1/8 mua (220 yds)

Fest

“Yards

UNITS OF SPEED

1 foot/sec (fps)

1000 fps

1 kilometer/hr
(km/hr)

1 mule/hr (stat.)
(mph)

0.59 knot (kt)*
0.68 stat. mph
1.1 kilometers/hr

600 knots

0.54 knot
0.62 stat. mph
0.91 ft/sec

0.87 knot
1.61 kilometers’hr
1.47 ft/sec

1.15 stat. mph
1.69 feet/sec

1.85 kilometer/hr
0.515 m/sec

*A knot 1s 1 nautical nmule per hour.

Miles

Certimeaters

1inch
1 foct
1 yard
1 mile
1 certimeter

1 meter

005333333

03337008
39.37008

1

2

=280
0.032 805 40

3.250 840

0027777 75
03333333
1

1780
0010935 13
1.093 613

0000015782 &3
000189393 9
000565131 &

1
0.000006 213 712
0000621 37 2

254




UNITS OF VOLUNMIE

1 gallon

1 fl ounce

1 in°

1

Ik

Ik

3 78 liters

231 cubic inches
0.1335 cubac ft
4 quarts

8 pints

2957 cubic centimeter (cc)

or nmulliliters (ml)
16387 cc

UNITS OF AREA

1 sq meter
1 sq1n
1 mul

1 acre

|l

10.76 sq ft

645 sq mullimeters (mm)
1.000_000 sq mil
0.001 inch

43 560 sq ft

UNITS OF WEIGHT
1 kilogram (kg) = 2.2 pounds (lbs)

l pound = 045Kg
= 16 ounce (0z)
loz = 437.5 grains
lcarat = 200mg
1stone (UK.) = 636kg

MNOTE: These are the U.S. customary (avoirdupois) equivalents, the froy
or apothecary system of equuvalents, which differ markedly, was used long
ago by pharmacists.

UNITS OF POWER / ENERGY

1HP. = 33,000 fi-lbs/min
= 550 ft-lbs/sec
= 746 Watts

= 2545 BTU/hr
(BTU = British Thermal Umnait)

1 BTU = 1055 Joules
778 ft-1bs
= 0.293 Watt-hrs




ENERGY CONVERSIONS

1 BARREL OF OIL

=5.8X10°BTU

=42 US gallons = approx. 159 litres
1 cubic metre = 35.315 cubic feet = 6.2898 barrels
1 tonne of crude oil = approx. 7.3 barrels

Tonne of o1l equivalent

The tonne of oil equivalent (toe) is a unit of energy defined as the amount of energy released by
burning one tonne of crude oil.

Mtoe, one million toe
gigatoe (Gtoe, one billion toe).

A smaller unit of kilogram of oil equivalent (kgoe) is also sometimes used denoting 1/1000 toe.

« 1toe=39,683,205.411 BTU

« 1toe=7.11,7.33, or 7.4 barrel of oil equivalent (boe)

- 1 barrel of oil equivalent (boe) contains approximately 0.146 toe (i.e. there are approximately 6.841 boe
in a toe).




ROMA RAKAMLARI

Sembol Name Deger Tanim
I unus 1 Bir

\Y; quinque 5 Bes

X decem 10 On

L quinquaginta 50 Elli

C centum 100 Ylz

D quingenti 500 Bes ylz
M mille 1,000 Bin

V (5,000) X(10,000) L(50,000) C(100,000) D(500,000) M(1,000,000)

CMXXIVDLXXXVII (924,587)

MDCCCLXXXVIII is 1000+500+100+100+100+50+10+10+10+5+1+1+1 or 1888
MCMXCIX is M CM XC IX or 1000+(1000-100)+(100-10)+(10-1) or 1999
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Complex numbers

A complex number Z = €C is of the form a,b = eR where Z = a + ib and i?=-
1

Polar representation Z = Ue'?, where U,60 €R

e With U = Va? + b? the modulus or magnitude

* And the phase 6 = arctan(b/a); a ve b’nin isaretlerine bakilarak
acinin hangi diuzlemde oldugu belirlenir (a,b):(+,+),(-,+), (-,-), (+,-).

Complex conjugate
Z = U(cosB + isinf) = Ue'?

Z* = (a+ib)'=Ue % = U(cosf —isinf) = a — ib



Complex numbers

Complex numbers provide a compact way of describing amplitude and phase (and the operations that affect them, such as filtering)
Complex number z = x +jy  (Xandy realvaluedj — \/—1. )

e =cosf+jsin6

r=z| =vx*+5y,
6 = arg(z) = tan ! 2
x

----------- z=ua+ b
oS |
b |E |
) |
z|cos @ :
6\ | Iu . >
Real axis
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Complex Numbers Properties

when z# 0+ 0i

z=a+biand w=c+di.
Imaginary unit number:

Complex numbers addition:

Complex numbers multiplication:

Complex conjugate:

Modulus of a complex number:

Euler’s formula:

Polar form:

Periodicity of complex numbers:

i=+v—1

(a+bi)+ (c+di)=(a+c)+i(b+d)

(a+bi)(c+di) = (ac — bd) +i(ad + bc)

z=da—bi

ol =Vaz=va+b?

E:ﬁ

=cosO+isin@




The Complex Number System

* [tis the extension of the real number system via closure under exponentiation.

i =+/-1 Cc = a+ bi (ceC abeR
The “imaginary” Rec]l=a
unit IVVI/[C] —b
* (Complex) conjugate: c
¢* = (a + bi)* = (a - bi) — —— +
 Magnitude or absolute value: “Real” axis
|c|? = c*c = a*+b? —R
“Imaginary”

‘C‘EVC*C:\/(a—bi)(a+bi):\/a2_|_b2 axis



Complex Exponentiation

 Powers of i are complex units: \
+i el
* Note: p% Lo i /{
- @" =Cc0osf+1sIiné S | o
em/2 = | .
—1
T — __
€ 1 Z1=2 e’mi

712 = (2 e i)A2 = 272 (e Ti)A2 = 4 (e mi )2 = 4 e 2T



180°

300°
270°



Review of complex exponential
geometric series is used repeatedly to simplify expressions.

-1 __ 1_Xn
1—X

» X" =1+ X+ X" +...+ X"
> if the magnitude of x is less than one, then

Zx = x’ x| <1

The geometric series is often a complex exponential variable of the form e,
where j= v/—1




Complex Numbers

* Euler’s formula [earys cos(#) £ jsin(o)

™| = \jcnsl(ﬁ) +sin°(8) = |

sin(8)
cos(6)

o(e™?) = tan™' (£ ) = tan"' (tan(6)) = +6

¢ Pl‘Opel‘tieS 5!."?(9) — ﬂl (gl — E'_"m)

2]

1 |
cos(6) = 5 (e’ +e7)




Ornek

What's the polar form of z = 5 — 5i?7 We first need to find the

modulus of z, which is given by:

i = /52 +(=5)?
~ V50

The argument is given by:

5
6 = arctan | —
-5

= arctan(—1)
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Properties of the polar form

z = |z|e’® and w = |wle™®

. Since e

C el = e

Eiﬁ‘ :EJB_EEB — ¢

i0
+2mi

i6

1

. From the above property = P
i _ ,i(0—6)

e 7 =

e =010 — 2y = (|z]e0) (Jw]e?) = |z]|w]e/+9)

. (€9)" = ¢™® for any number 7 (i.e., n could be complex!)

G

—eV =1

= cos (4

=27T) + i Sin (-

-21) = 1, then ¢/(9%27)

=€

i0 . yE2mi

:E'I'

0
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Trigonometric Identities

b sl il O e 50 _ 1 _je _je
sin 6 2].(6 ) cos @ = 2(6 +e’)
e’ = cosO+ jsin O
sin(@+ &) = sinBcos o + cos @sin & cos(0+ &) = cosBOcosa— sinfsino
sin @sin o = %(cos(@—a)— cos(0+ «)) cosBcos o = %(COS(Q + o) + cos(6— o))

sin @cos ox = %(sin(9+ &) + sin(6 — o@))

sin?@+ cos’6 = 1 cos’0—sin“@ = cos286
sin” @ = %(1 — cos20) cos’ 6 = %(1 + cos206)
e DI sin 6

cos 6




Trigonometric Formula

cosec A —cot? A =1
2tan A
1—tan” A

cos’A +sinfA=1 seccA—tan®A =1

sin2A =2sinAcos A cos?A = cos’ A —sin® A tan2A =

cos(A + B) + cos(A — B)

sin(A + B) =sinAcosB + cos Asin B cosAcosB = 5
cos(A + B) = cos A cos B T sin A sin B cinAsing - oA —B) ; cos(A + B)
tan(A £ B) = an an sin A cosB — sin(A + B) + sin( )
1 FtanAtanB 2
sinA +sinB = EsinA-I_BcnsA_B CDSEA:M
2 2 3
sind —sinB = zcgs‘d‘-"BSinA_B sin2 A — 1 —cos2A
2 2
A+ B A—B 3 cos A 3A
cosA +cosB = 2cos + COS cos? A — cos A + cos
2 2 4
cosA —cosB = —2sin A+B sin A—B sin A = 3sinA — sindA

4



90" < o< 180°

cosa <0

sina >0

D:!

(% y)
(+, +)

<0 <90
cost > 0

sind > 0

1. Bolge

Y

180° < p < 270°

3. Bolge

(% y)
(= =)

cosi< 0

sinf <0

0

(%, )
(+,-)

270° < ¢ < 360°

cosp > 0

sing < 0

4. Bolge

0° | 30° | 45° | 60° 90°
sin | O l ”@ \E 1
2 2 2
cos | 1 ”E JE l 0
2 2 2
tan | 0 L 1 \E Tanimsiz

II.-’ ﬂ 'H.II .
cos| —+8 |=-sing
2 )

sin(r—08)=sin6
sin(r+6)=-sinB

-C0s6

cos(n—10)

cos(m+6)=-cosb

Sine and Cosine Addition and Subtraction Formulas
sin(a+b)=smacosb+cosasinb
sin(a—b)=simacosb—cosasinb
cos(a+b)=cosacosbh—smasinb

cos(a—b)=cosacosh+smasinb

COSX = (E?i']: + E?_i']:)

1
2
l (Ei.l: B E—:’.l:)

SIILY = >
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Exponential Function
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Exponential Function

The function defined by is called an exponential function with base b and exponent x.
The domain of fis the set of all real numbers.

AP

Jlx) =0 h>0, b1
The exponential function with base 2 is the function with domain (— oo, ).
The values of A x) for selected values of x follow:



Laws of Exponents

* Let a and b be positive numbers and let x
and y be real numbers. Then,

1. BBy — pEY
2. 2 e

¥ oy

h-

F X V ¥ ""/
3 (f)A — h™
4. (2




Examples

Sketch the graph of the exponential function f(x) = 2~*.

Solution

Now, consider a few values for x:

5 -4 -3 -2 -1

/3 1/1 1/8 1/4 1/2
2 0

— There is a horizontal asymptote at
y = 0.

Furthermore, 2¥ increases without bound when x increases
without bound.

Thus, the range of fis the interval (0, o).

>

A



Properties of Exponential Functions

«  The exponential function y=b* (b>0, b# 1) has the following properties:
1.1ts domain is (— oo, o).

Its range is (0, o).

.Its graph passes through the point (0, 1)

It is continuous on (—oo, ).

on B W N

It is increasing on (—o, ) if b>1 and decreasing
on (—oo, ) if b<1.



The Base e

* Exponential functions to the base e, where e is an irrational number whose value is 2.7182818..., play an important
role in both theoretical and applied problems.

e |t can be shown that



Examples

Sketch the graph of the exponential function f(x) = e*.

Solution

Sketching the graph:

flx) =

/s



Examples

» Sketch the graph of the exponential function f(x) = e™.
Solution
e Sincee™>0itfollowsthat0<1/e<1andso
flx) =e™*=1/e=(1/e)* is an exponential function with base less than 1.
* Therefore, it has a graph similar to that of y=(1/2)~
 Consider a few values for x:

— 3 — 2 —1 1 2 3

20.09 739 2.72 0.37  0.14 00)5




Examples

e Sketch the graph of the exponential function f(x) =e™.
Solution
e Sketching the graph:

fix) = ™
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sinx)

CDSI)

n-1

=]

COSX

—SInX

where ¢ 1s a constant

where 7 15 any real number

d;CX cXx
¢ ) —ce
for x>0



Differentiation

wy !
(uv)' = u'v +uv', (—) =
v

w'o —uv'

IJE

(:m}':"} — ™y + " Vo) 41 Cum o L g

where "C, = (”) — L
-

i{sinx} = COSX —I[Einh:t'} = cosh x
X x
di{cgs_'r} — —s5inx d—(CDShI} = sinh x
X x
d
E{tanx} — seczx E{tanhx} = E-«E'-t?l“l2 X
di (secx) —=secxtanx di (sechx) = —sechxtanhx
X x
di(mtx} — _ cosec’ x di (cothx) = — cosech” x
X x
d d
E(ms&cx} — — cosecx cotx E(cns&chx} — —cosechx cothx



Integral






--...____-_‘_\_
-
U=
O
=

Il
©

..-"'"_-"‘\.
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|
S|
S
I
L

b

/ U dv = uv

<

— / v diu
<0

Y
(uv)' = u'v + uv', (—) — -

v U

/sinx dx = —cosx+c
/casx dxy =sinx<+¢

u'v — uv’

2 =
&=~ B~
o Ta

— —
g T—

1s 8]

5
ad

2N
=
¥

Bl &

~—
e
=
= =]
-
—

h=0
a0
0, where ¢ 1s a constant
ax’ where x 15 any real number
61
1
il for x>0
x
COSX
—sinx



Limit



Definition of Limit of a Function

Suppose that the function f(x) is defined for all values of x near a, but not necessarily
at a. If as x approaches a (without actually attaining the value a), f(x) approaches the
number L, then we say that L is the limit of f(x) as x approaches a, and write

(x,f(x))

No matter how x approaches a, f(x) approaches L.




Properties of Limits and Direct Substitution

By combining the basic limits with the following operations, you can find limits for a wide variety of
functions.

Properties of Limits
Let b and ¢ be real numbers, let n be a positive integer, and let f and g be
functions with the following limits.
lim f(x) = L and 1lim g(x) = K
X—C

X—cC

1. Scalar multiple: lim [bf(x)] = bL

X—C

2. Sum or difference: Iim[ f(x) = gx)] =L K

X—C

3. Product: lim [ f(x)g(x)] = LK
X—C

4. Quotient: limJLx) - £ K # 0
X—cC g()C) K

5. Power: lim | f(x)]" = L”



Properties of Limits and Direct Substitution

The following summarizes the results of using direct
substitution to evaluate limits of polynomial and rational functions.

Limits of Polynomial and Rational Functions
1. If p 1s a polynomial function and c 1s a real number, then
lim p(x) = p(c).

2. If ris a rational function r(x) = p(x)/g(x), and c¢ is a real number such that
g(c) # 0, then

lim r(x) = r(c) = M

X—c q(C)



Possible Limit Situations

a

lim f (x) =L

X—> a

lim f (x) = DNE

X—>a

DNE = Does Not Exist



Left & Right Hand Limits

lim f (x)

X—>a

lim f (x)

X—a




Definition: One Sided Limits

Left-Hand Limit: The limit of f as x approaches a from the left equals L is denoted

lim f(x) =L

X—>a

Right-Hand Limit: The limit of f as x approaches a from the right equals L is denoted

lim f(x)=L

X—> a~



Evaluating Limits Graphically
Limits that do not exist

f(x) iIncreases or decreases without bound as x approaches c.

2
X —3

\ f{x) increases

without bound

6. f(X) =

120

This function is undefined at x = 3, because the denominator
goes to zero. It can not be simplified, so there is a vertical
asymptote at x = 3.

Approaching 3 from the right, f(x) increases without bound.

f
I
I
f
I
I
110 b
I
I
-+|

f{x) decreases
without bound

1-10

l_=p asymptote

} +

T

|

I

I

| Wertical
|

I

I

I

Approaching 3 from the left, f(x) decreases without bound.

lim f(x) =dne

X—>3

When the function increases or decreases without bound, the limit does not exist.



Possible Limit Situations

L f

\

a

lim f (x) = DNE

X—>a

DNE = Does Not Exist



Example — Dividing Out Technique

* Find the limit.

, X2+ x — 6
Iim
x—> —23 x + 3

, x2 +x — 6 , (x — 2)(x + 3)
Iim = lim

x—>—3 x + 3 x—>—3 x + 3




THE SUM LAW

The limit of a sum is the sum

of the limits.

lim|[ £ (x) + g(x)] = lim f (x) + lim g(x)

X—a X—a X—a



THE DIFFERENCE LAW

The limit of a difference is
the difference of the limits.

lim[ f(x) — g(x)] = lim f (x) — lim g(x)

X—a X—a X—a



THE CONSTANT MULTIPLE LAW

The limit of a constant times
a function is the constant times
the limit of the function.

lim[cf (x)]=clim f (x)

X—a X—a



THE PRODUCT LAW

The limit of a product is
the product of the limits.

lim[ f (x)g(x)] = lim f (x) - lim g(x)

X—a X—a X—a



THE QUOTIENT LAW

The limit of a quotient is the quotient
of the limits (provided that the limit of
the denominator is not 0).

lim f
jim 00 _ 2 O it tim g(x) =0
X—>a g(x) lim g(x) X—>a

X—>a




THE POWER LAW

If we use the Product Law repeatedly
with f(x) = g(x), we obtain the Power

Law.

6.1im[ f(x)]" z[lim f(x) |

X—>a X—>a

where n is a positive integer



USING THE LIMIT LAWS

In applying these six limit laws, we
need to use two special limits.

/7. llmc=c¢c
X—a

S.lIMmx=a
X—a

" These limits are obvious from an intuitive point of view.
= State them in words or draw graphs of y=cand y = x.



USING THE LIMIT LAWS

If we now put f(x) = x in the Power Law

and use Law 8, we get another useful

special limit.

O.llIMmx" = a”

X—a

where n is a positive integer.



Finding a Limit at Infinity

5_ 7,1 lim 5—7-lim =+ lim
Iim 5X2_7X+1:|im X | X2 ||m 5X2—7X‘|‘1_ X—0 X—)oo; X—)ooP
X —> 00 2 2 X —>00 1 5 X—»00 2 B ] ] ]
XTH XS 2+ —+ 2XTAXEDS im 24 1im 1+5-I|mi2
X X X—>00 X—0 X X—wo ¥
lim 5 / , 1 5-0+0 5
_xom X XE T2.1040 2
= = 1 5 +0+
Iim 24 F—
X—>o0 X X

2 2
lim(S— 2)=1in’15—lim— =5—-0 =5.

X—00 X X—00 X—0C0 )C2



Limits at Infinity

Jx) = xjﬁ— 1
lim f(x) =3

X—>—00

lim f(x) = 3.

X—00

—4 -3 -2 —1

The limit of f(x) as x approaches — oo

or o0 15 3.

lim f(x) =0

X — —co

r—ea

| -

I

2
lim f(x) =0

= X

f has a horizontal asymptote at y = 0.

58



Logarithms



Logarithms

 Exponential equations of the form
y = b (b>0,b#1)
* The logarithm of x to the base b, and is denoted log,x.
 Logarithm of x to the base b
y=logx ifandonlyif x=b (x>0)

IOg X= Ioglo X Common logarithm

In X — |Oge X Natural logarithm

y=log, x ise x=bY




Laws of Logarithms

* If mand n are positive numbers, then

— I
00, Mh = 08, M+ 08,
N1 _
N
K ,
0g,m” =nlog, m
no, |l =10
0g, L =U

Log1=0"%1% 0.3, Log 3= 0.5, Log 5 =~ 0.7, Log 7 = 0.8, Log10=1



Logarithms

Logl=0, Log 2=0.3,Log3=0.477,Log5=0.7,Log 7 =0.845, Logl0=1
log(a*b)=loga + logb; loga"=n*loga

10Log(420)=10Log(10x7x2x3)=10Log(10) + 10Log(7) + 10Log(3) +
10Log(2)=10+8+5+3 =26

10Log(75)=10Log(3*5%)= 10Log(3) + 10Log(52) = 5 + 20log(5) =5+14=19
P aw=10log(P);

P sm=10l0og(Pm,,); 1W=10°> mW. 1mW=103 Watt

K45=10log(Po/Pi); Po:¢ikis gucu(w), Pi: giris gucu(W).

Bir sistemin glic cikisi 1 watt'tir. Giris gucu 8 watt. Glc¢ kazancini
logaritmik deger olarak hesaplayiniz? Bu guc¢ kazanci kazan¢ mi yoksa
kayip mi?

— K=10log(1/8)=10Log(1)-10Log(23)=0-30Log2=-9dB. Kayiptir ¢linkii, K<0.




Properties of Logarithmic Functions

* The logarithmic function y =log,x(b >0, b # 1)
has the following properties:
1. Its domain is (0, o).
Its range is (— oo, o).
Its graph passes through the point (1, 0).
It is continuous on (0, o).

Al

It is increasing on (0, ) if b >1 and decreasing on (0, ) if b < 1.



Exponential Logarithmic Functions

Solve the equation 2eX*2 =5,
Solution
Divide both sides of the equation by 2 to obtain:

N9

NI \ (N
)|

Take the natural logarithm of each side of the equation and solve:

ne*” " =n2.5
WA+ 2)yne=_n2.5
X+ 2=n2.5
N=-2+ 025
v —1.08
e  Properties relating e*and In x: &nx = X (x> 0)

In e¥= x (for any real number x)



Kazan¢ — Kayip ve Desibel Tanimlari
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dB, dBm, dBw

1) dB- desibel iki gii¢ seviyesi orani ilen tanimlandigindan birimsiz sayidir.

dB =10Log,, (%)

1

Iki giic seviyesi birbirleri ile oranti temelinde iliskilidir. Eger P2 gii¢ seviyesi P1 gli . ORTAM N

2
seviyesinden buyik ise dB pozitiftir. Tersi durumda negatiftir. P = V? esit veya ayni

direng degerlerinde gerilimler ol¢iildiiglinde dB degeri gerilimler cinsinden asagidaki
bicimde yazilir.

' P1,V1 P2,V2
dB = 20Log,, (%)

Vl
2) dBW- Olculen P [Watt] glcuinln, 1W referans gliciine oraninin logaritmik degeridir.
3) dBm- 6lciilen P [Watt] gliciiniin, ImW=10"° Watt referans giiciine oraninin logaritmik

degeridir.

dBm=dBW+30
dBW=dBm-30



Gain, Attenuation, and Decibels

Cikis isaret seviyesinin giris isaret seviyesine orani kazanc, kayip ya da buffer olarak kendini ifade eder.
Gain

— Gain means amplification. It is the ratio of a circuit’s output to its input.

Amplifier Decibels: Decibel Calculations
Vi, \ Viout — Voltage Gain or Attenuation
Input signal Output signal dB =20 log V,i/ Vi
VvV — Current Gain or Attenuation
A = gain = 24 ~
Vi, dB=20log/ ./ I,

— Power Gain or Attenuation

dB=10log P,/ P;,
An amplifier has gain.



Power: Gain, Attenuation and Decibels

Most amplifiers are also power amplifiers, so, can be used to calculate power gain K where P, is

the power input and P, is the power output.

Power gain (K) =P, ./ P,

Example: The power output of an amplifier is 6 watts (W). The power gain is 80. What is the
input power?

K=P,./P, therefore P, =P, ./K
P,,=6/80 = 0.075W =75 mW
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Amplification and Attenuation

A B

I Ampl. Cable Ampl. Ampl.
>Detector

4 dB
30dB 10dB 10dB

The total amplification of the (simplified)
receiver chain (between A and B) is

Gy lp=30-4+10+10=46



Gain, Attenuation and Decibels

Decibels: Decibel Calculations

* Example:

An amplifier has an input of 3 mV and an output of 5 V. What is the
gain in decibels?

dB = 20 log 5/0.003
=20 log 1666.67
=20 (3.22)
= 64.4
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Tx Power

Tx is short for “Transmit”

Tx power, the output of a wireless system generates at the RF interface. This power is calculated as the amount of energy given across a defined bandwidth
and is usually measured in one of two units:

1. dBm - arelative power level referencing 1 milliwatt

2. dBw —a linear power level referencing Watt

dBm = 10 x log[PmW]
dBw =10 x log[Pw]

Bir sistemde bir adet dBm (mW) ya da dBw (W) vardir; ¢ok sayida + ve — lerden olusan dB ler bulunur.

dBm=dBw+30
dBw=dBm-30



Gain, Attenuation and Decibels

Decibels: Decibel Calculations
e Example:
A filter has a power input of 50 mW and an output of 2 mW. What is the gain or attenuation?
dB =10 log (2/50)
=10 log (0.04)
=10 (-1.398)
=-13.98

— If the decibel figure is positive, that denotes a gain.
— If the decibel figure is positive, that denotes an attenuation.
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Matematiksel Fonksiyonlar



Matematiksel Modeller

* Bir matematiksel model hicbir zaman fiziksel bir durumun tam
olarak dogru bir temsili degildir - bir ideallestirmedir.

— lyi bir model, gercekligi matematiksel hesaplamalara izin verecek kadar
basitlestirir, ancak degerli sonuclar elde edilecek kadar dogrudur.

— Modelin sinirlamalarinin farkina varmak onemlidir.

— Sonunda, Doga Kanunlarinin da son s6zu vardir, unutimaz.

* Gercek dunyada gozlemlenen iliskileri modellemek icin
kullanilabilecek bircok farkli islev ttrt vardir.



Dogrusal Modeller

v'nin x'in dogrusal bir fonksiyonu oldugunu soyledigimizde,
fonksiyonun grafiginin bir dogru oldugunu kastediyoruz.

Boylece, bir dogrunun denkleminin egim-kesme noktasi formunu
asagidaki fonksiyon icin bir formul yazmak icin kullanabiliriz:

y=Ff(X)=mx+Db

burada m, dogrunun egimi ve b, y kesme noktasidir.

Dogrusal fonksiyonlarin karakteristik bir 6zelligi, sabit bir oranda
bluyumeleridir.

Ornegin, sekilde, f (x) = 3x - 2 dogrusal fonksiyonunun bir grafigi ve
ornek degerler tablosu verilmistir.

3 degeri grafiginin egimi, y'nin x'e gore degisim orani olarak
yorumlanabilir.

X degeri 0.1 arttiginda, f (x) degerinin 0.3 arttigina dikkat edin.

Yani, f (x), x'in U¢ kati hizli artar.

N

Ptk ek ek e e e

-L—- W N =

v

N N = o

N
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Dogrusal Modeller

Kuru hava yukari dogru hareket ettikce genisler ve sogur. Zemin sicakhgi 20 °
C ve 1 km yukseklikteki sicaklik 10 ° Cise, dogrusal bir modelin uygun
oldugunu varsayarak sicakhgi T (° C cinsinden) yuksekligin (kilometre
cinsinden) bir fonksiyonu olarak ifade edin. Fonksiyonun grafigini cizin. ESim
neyi temsil ediyor? 2.5 km yikseklikte sicaklik nedir?

T, h'nin dogrusal bir fonksiyonu oldugunu varsaydigimizicin, T=mh +b
yazabiliriz.

h =0, yani 20 =m*0+b oldugunda, y kesme noktasi b = 20'dir. Ayrica, h=1
oldugunda T = 10, m=-10 olur.

Gerekli dogrusal fonksiyon T =-10h + 20'dir.

EGimm =-10°C/ km'dir.

Bu, yukseklige gore sicaklik degisim oranini temsil eder.

h = 2,5 km yukseklikte sicaklik: T=-10 (2,5) + 20 = -5 ° C'dir.

—10A + 20

>Y



Deneysel Model ( Empirical Model )

Bir modeli formile etmemize yardimci olacak fiziksel bir yasa veya ilke ya da matematiksel bir denklem yoksa,
deneysel bir model olusturulur.

Deneysel Model tamamen toplanan verilere dayanmaktadir. Veri noktalarinin temel egilimini yakalamasi
anlaminda verilere "uyan" bir egri aranir.

Ornek: Tablo, 1980'den 2002'ye kadar Mauna Loa Gézlemevi'nde milyonda parca olarak élciilen atmosferdeki
ortalama karbondioksit (CO2) seviyesini listelemektedir. CO2 seviyesi icin bir model bulmak icin verileri
kullanin. Lineer model olusturun.

Sekilde gosterilen dagilhm grafigini yapmak icin tablodaki verileri kullaniriz. Grafikte t zamani (yil olarak) ve C,
CO2 seviyesini (milyonda parca, ppm) temsil eder.

A . CO- level CO- level
370 Year (in ppm) Year (in ppm)
1980 338.7 | 002 356.4
360
1982 341.1 19904 358.9
- 1984 344 .4 1906 362.6
|O86 347.2 1908 366.6
a0 1988 351.5 2000 369.4
1 ., 1 } , : . 1990 354.2 2002 372.9
1980 1985 1990 1995 2000 ‘

Scatter plot for the average CO, level



Dogrusal Modeller

Notice that the data points appear to lie close to a straight line.
— So, in this case, it’s natural to choose a linear model.

However, there are many possible lines that approximate these data points.
— So, which one should we use?

One possibility is the line that passes through the first and last data points.

The slope of this line is:

37/2.9-338.7 _ 34.2 1 G545

2002 —1980 22




Dogrusal Modeller

 The equation of the lineis: C-338.7 = 1.55(t -1980) or C=1.55t- 2739

* This equation gives one possible linear model for the CO2 level. It is graphed in the
figure.

e Although our model fits the data reasonably well, it gives values higher than most of
the actual CO2 levels.

* A better linear model is obtained by a procedure from statistics called linear
regression.

e |f we use a graphing calculator, we enter the data from the table into the data editor
and choose the linear regression command.

* With Maple, we use the fit[leastsquare] command in the stats package.
 With Mathematica, we use the Fit command.



Dogrusal Modeller

The machine gives the slope and y-intercept of the regression line as:
m =1.55 b =-2734

So, our least squares model for the level CO,is: C=1.55t-2734

In the figure, we graph the regression line as well as the data points.

Comparing with the earlier figure, we see that it gives a better fit than

our previous linear model.
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Dogrusal Modeller

Use the linear model given by Equation 2 to estimate the average CO, level for 1987 and
to predict the level for 2010.

— According to this model, when will the CO, level exceed 400 parts per
million?

— Using Equation 2 with t = 1987, we estimate that the average CO,
level in 1987 was: C(1987) = (1.55)(1987) — 2734

— This is an example of interpolation—as we have estimated a value
petween observed values.

— In fact, the Mauna Loa Observatory reported that
the average CO, level in 1987 was 348.93 ppm.

— S0, our estimate is quite accurate.



Dogrusal Modeller

With t = 2010, we get:
C(2010) =(1.55)(2010) - 2734 384.81

So, we predict that the average CO, level in
2010 will be 384.8 ppm.

— This is an example of extrapolation—as we have predicted a value
outside the region of observations.

— Thus, we are far less certain about the accuracy
of our prediction.



Dogrusal Modeller

Using Equation 2, we see that the CO, level
exceeds 400 ppm whed:. 55192t — 2734.55 > 400

: . . 134.
Solving this inequality, we get: > S134.55 _ 2019.79
1.55192

— Thus, we predict that the CO, level
will exceed 400 ppm by 2019.

— This prediction is somewhat risky—as it involves
a time quite remote from our observations.



Polynomials

A function P is called a polynomial if P(x) = anxn + an-1xn-1 + ... + a2x2 + alx + a0

where n is a nonnegative integer and the numbers a0, al, a2, ..., an are constants called
the coefficients of the polynomial.

The domain of any polynomialis © = (—OO, OO) :
If the leading coefficient a, + O, then the degree of the polynomial is n.

— For example, the funftion
P(x) =2x° —x* +§X3 + 2

is a polynomial of degree 6.



Polynomials

* A polynomial of degree 1 is of the form P(x) = mx + b. So, it is a
linear function.

* A polynomial of degree 2 is of the form P(x) =ax2 + bx + c. It s
called a quadratic function.

* |ts graph is always a parabola obtained by shifting the parabola
y — X2. The narahala Ananc itnwAarAd if A \ NanAd

' A

downward \J/
AN

: o ! X
O ] D

@) y=x*+x+1 (b) y=—2x2+3x+1




A polynomial of degree 3 is of the form
P(x) =ax® +bx* +cx+d (a = 0)

It is called a cubic function.

/

(a)y:x3—x+l



POLYNOMIALS

We will see later why these three graphs
have these shapes.

Polynomials are commonly used to model various quantities that

occur in the natural and social

VA
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POLYNOMIALS

A ball is dropped from the upper observation deck of the CN
Tower—450 m above the ground—and its height h above the
ground is recorded at 1-second intervals.

— Find a model to fit the data and use the model to predict the time at
_Which the ball hits the ground. Time Height

hr (seconds) (meters)

§) 450
| k45
43 ]

—

400 +

200 T

0O




POLYNOMIALS

 We draw a scatter plot of the data. We observe that a linear model is inappropriate.

 However, it looks as if the data points might lie on a parabola. So, we try a quadratic
model instead.

e Using a graphing calculator or computer algebra system (which uses the least squares
method), we obtain the following quadratic model = 449.36 + 0.96t - 4.90t?

* We plot the graph of Equation 3 together with the data points. We see that the
guadratic model gives a very good fit.



POLYNOMIALS

The ball hits the ground when h = 0. So, we solve the quadratic equation -4.90t2 + 0.96t +
449.36 =0

The quadratic formula gives »

. _ —0.96= J(0.96)% — 4(—4.90)(449.36) so0
2 (_4 " 9 O) 200 +
t ~9.67 S
— The positive root is of 2 4 & s

— So, we predict the ball will hit the ground after about 9.7 seconds.



POWER FUNCTIONS

A function of the form f(x) = x3, where a is constant, is called a power function.
a = n, where n is a positive integer

— The graphs of f(x) =x" forn=1, 2, 3, 4, and 5 are shown.
— These are polynomials with only one term.

— We already know the shape of the graphs of y = x (a line through the
origin with slope 1) and y = x? (a parabola).

y = x2 y = X" Y == X y=x
VA VA ' VA VA : VA '
y = X
| / I 1 I 11
} > - } > — ¢ > — i : -
/ 0 y i 0 g X / 0 | X 0 \ \




CASE

The general shape of the graph of f(x) = x" depends on whether n is even or odd.

If n is even, then f(x) = x"is an even function, and its graph is similar to the parabola y = x°.

If nis odd, then f(x) = x"is an odd function, and its graph is similar to that of y = x3.

However, notice from the figure that, as n increases, the graph of

y = x" becomes flatter near 0 and steeper when |x| = 1. Ifxis
small, then x2is smaller, x3 is even smaller, x*is smaller still, and so on.

~Y




CASE

a = 1/n, where n is a positive integer

f(x)=x""=1x
— The function IS a E(%?(Sfinﬁon.
— For n =2, it is the sqL@re-noot function , whose domain is
and whose graph is

the upper half of the parabola x = y2.

— For other even valués VX /un/

of n, th.eygr;ap y f 0 x
IS similar to
that of

(a) f(x)=/x



CASE

For n = 3, we have the cube root fundtibX) = 3&

whose domainis (recall that every
real number has a cube root) and whose

graph is shown.y — o/x
— The graphYof= I/x fornodd (n>3) i~~~ ya

(1, 1)

to that of
///‘0

(b) f(x)=3/x




— The graph of the reciprocal function f(x) = x = 1/x is shown.
— Its graph has the equation y = 1/x, or xy = 1.

— It is a hyperbola with the coordinate axes as its asymptotes.




CASE

This function arises in physics and chemistry in connection with Boyle’s Law, which states
that, when the temperature is constant, the volume V of a gas is inversely proportional
to the pressure P. V=C/P

where Cis a constant. So, the graph of V as a function of P has the same general shape as
the right half of the previous figure.

V A




RATIONAL FUNCTIONS

Px)

A rational function f is a ratio of two polynomials f(x) = 0(x)

where P and Q are polynomials. The domain consists of all values of x
such that Q(x)+0.

A simple example of a rational function is the "'“"“';,: AN — ]

whose domain is {x|x # 0}. .

~

This is the reciprocal function graphed in the

=Y




RATIONAL FUNCTIONS

2X* — x% +1

The function f(X) =
X° — 4

|{s a ratlonabf}mctlon with domain

X | X &
\J




ALGEBRAIC FUNCTIONS

A function fis called an algebraic function if it can be
constructed using algebraic operations—such as addition,
subtraction, multiplication, division, and taking roots—starting
with polynomials.

Any rational function is automatically an algebraic function.

I-l[e(e arewre examples:

3(x) X4 —16X°
X 4+ ~/ X

(X —2)3/x +1




ALGEBRAIC FUNCTIONS

An example of an algebraic function occurs in the theory of
relativity.

_rﬁe:mas% o{\a/sart_lcle withwelocity v is

2
\/1 oz
C

where m,is the rest mass of the particle and ¢ = 3.0 x 10> km/s is the
speed of light in a vacuum.




TRIGONOMETRIC FUNCTIONS

In calculus, the convention is that radian measure is always used
(except when otherwise indicated).

— For example, when we use the function f(x) = sin x, it is understood
that sin x means the sine of the angle whose radian measure is x.

— Thus, the graphs of the sine and cosine functions are as shown

:IA *IAA £:~I 1A~
yA VA

= g
t
\ 0
_l.-

(a) flx)=sinx (b) g{x)=cos x




TRIGONOMETRIC FUNCTIONS

* Also, the zeros of the sine function occur at the integer
multiples of it . That is, sin x = 0 when x = nmit, n an integer.

* An important property of the sine and cosine functions is that
they are periodic functions and have a period 21. This means
that, for all values of x, sin(x + 2m)= sin(x), cos(x + 2m)= cos(x).

* Notice that, for both the sine and cosine functions, the domain
is (—oo, ) and the range is the closed interval [-1, 1]. Thus, for
all values of x, we have: -1 < sin(x) < 1,-1 < cos(x) < 1.In
terms of absolute values, itis: |sin(x) < 1], |cos(x) < 1].



TRIGONOMETRIC FUNCTIONS

The periodic nature of these functions makes them suitable for modeling repetitive
phenomena such as tides, vibrating springs, and sound waves.

For instance, in Example 4 in Section 1.3, we will see that a reasonable model for the
number of hours of daylight in Philadelphia t days after January 1 is given by the
function:

| 27
L(t) =12+ 2.8siIn| — (t — 80
(t) 365( )




TRIGONOMETRIC FUNCTIONS

The tangent function is related to the sine and cosine functions by the equation

tan (X) _ sin(x)

cos(X)
The tangent function is undefined whenever cos x = 0, that is, when x = + %, + YRR
Its range is (—o0, ) . Notice that the tangent m function has period: tan(x+m ) = tan(x
) for all x.

The remaining three trigonometric functions—cosecant, secant, and cotangent—are
the reciprocals of the sine, cosine, and tangent functinn<

Y A

— — — — — —
—— — — — — — —

I I
| i
1 )

0O

S f—aT
4

————t\)‘q -
——— -Vl

—

_————N

=Y



EXPONENTIAL FUNCTIONS

The exponential functions are the functions of the form f(x)=a*, where the base a is a
positive constant.

— The graphs of y = 2¥ and y = (0.5)* are shown.
— In both cases, the domain is (—o0, ) and the range is (0, o).

— We will see that they are useful for modeling many natural
phenomena—such as population growth (if a > 1) and radioactive
decay (if a < 1).

— The log Dase a is a
positive Xponential
functio

| 1
; X 0

v

R, S —

{} ] X

@) y=2* (b) y = (0.5)"



LOGARITHMIC FUNCTIONS

The figure shows the graphs of four logarithmic functions with
various bases.

— In each case, the domain is (0, ©), the range i (—o0, 00), and the
function increases slowly when x > 1.




TRANSCENDENTAL FUNCTIONS

Classify the following functions as one of the types of functions that we have discussed.
* f(x) =5* is an exponential function. The x is the exponent

* g(x) =x>is a power function. The x is the base. We could also consider it to be a
polynomial of degree 5.

 u(t)=1-t+5t* is a polynomial of degree 4.

This is an algebraic function.
1+ X

1—x

Transcendental functions are those that are not algebraic.

h(x) =

— The set of transcendental functions includes the trigonometric, inverse trigonometric, exponential,
and logarithmic functions.

— However, it also includes a vast number of other functions that have never been named.
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